Fuel Cell Basics

Using Micro-Transport Phenomena in MEMs Fuel Cells

A lot of work has been devoted to the development of long-lasting, efficient and portable, power sources for further technology improvements in commercial electronics devices, medical diagnostic equipment, mobile communication and military applications. These systems all require...

Renewable Energy Systems in the Future: Part 2

Electricity for residential and business use can be produced using a combination of wind, solar, and hydrogen fuel cells. There also needs to be cooperation between corporations, utility companies, and individuals to successfully transition to a renewable energy economy. Corporations will have to manufacture...

Renewable Energy Systems in the Future: Part 1

Despite the recent negative publicity surrounding fossil fuels, crude oil, and natural gas have been beneficial for the growth of the modern world. It has allowed us to have life after dark, transport goods all over the world, and enabled technology to advance. However, the use of fossil fuels has also resulted in...

Transport of Electrons through the Fuel Cell

If you look at any basic fuel cell diagram, you can see that the fuel cell generates electrons. In the scientific or engineering circles, these electrons have many names, but a common term is “charge transport.” Charge transport is the movement of charges from the electrode (where they are produced) to the...

Introduction to Electrolyzers

Electrolyzers use electricity to break water into hydrogen and oxygen. The electrolysis of water occurs through an electrochemical reaction that does not require external components or moving parts. It is very reliable and can produce ultra-pure hydrogen (> 99.999%) in a non-polluting manner when...

Fuel Cell Modeling

After you understand the basic concepts around designing, building, and testing fuel cells, the next step is optimization. Optimization often involves extensive experimentation and testing, however, sometimes experimentation does not yield the expected results. Mathematical modeling is useful when phenomena cannot be visually...

Electrical Subsystem of Fuel Cells

If you took the electrical output directly from a fuel cell, it would be an unideal power source. The output of a fuel cell is a DC voltage that varies widely and has a limited overload capacity. The electrical output is slow to respond to load changes because it is based on a chemical reaction, and may have...

Techniques for Measuring Fuel Cell Resistance

The fuel cell polarization curve provides useful information on fuel cell performance, however; additional information is needed to study its performance characteristics accurately. Cell resistance provides insightful information about a fuel cell that is not completely captured by polarization curves. Since fuel cell current densities are high in comparison with...

Water Management For PEM Fuel Cells

One of the greatest challenges associated with PEMFCs is the water balance in the fuel cell stack. As the chemical reaction occurs in each cell, water is generated. Depending upon the load and the operating conditions, there is a tendency for the fuel cells to both flood and dry-out. The water content in the...

Fuel Cell Heat Management

Creating high-efficiency fuel cells requires proper temperature control, and heat management to ensure that the fuel cell system runs consistently. Depending upon the fuel cell type, the optimal temperature can range from room temperature to 1000 ºC, and any deviation from the designed temperature range can result in...