Categories

Blog Search

Search Criteria

Blog Search:

Articles meeting the search criteria

The Use of Hydrogen as an Energy Storage System

Many countries around the world have been diligently working towards implementing renewable energy plants for over a decade. According to the International Energy Agency (IEA), renewables in the form of hydropower, bioenergy, wind and solar will account for 18% of primary energy by 2035. Since 2013, more electrical grid capacity was added...

Why Fuel Cells Lead The Road to Long-Term Sustainability for Vehicles

Fuel cells have now been under development for several decades. Since I first became interested in fuel cells in the 1990’s, I have seen waves of excitement and investment followed by periods of skepticism and disillusionment. Only a few companies have stayed in the game, with Ballard in Canada and the large automakers such as Toyota being a critical and essential part for...

What’s So Good About Hydrogen?

Many automotive manufacturers have chosen fuel cell technology as the long-term solution to replace combustion engines when the oil stops flowing -- but that’s not expected to happen for at least another 15 years (even if we keep using it at our current rate). So why are we...

Fuel Cell Buses, Utility Vehicles and Scooters

Fuel cells can be used to power the electric motor of buses, utility vehicles, and electric scooters. The vast majority of these fuel cells use oxygen from the air and compressed hydrogen; therefore, these vehicles only emit water and heat as byproducts. The major reason for developing fuel cell technology for...

Fuel Cell Vehicles - Automobiles

Fuel cell vehicles (FCV) use fuel cells to power the vehicle’s electric motor. Many FCVs use a fuel cell combined with a battery and supercapacitor to efficiently start-up, power, and utilize the best energy source for constant and peak power. In FCVs, the fuel cell uses oxygen from...

How to Predict Fuel Cell Performance

The performance of a fuel cell stack can be estimated using a few equations combined with some input data. A common way of characterizing performance of different fuel cell stacks is using polarization curves. Although you cannot pinpoint specific issues with these curves, they will allow you to calculate the overall performance. An example polarization curve is...

Fuel Cell Reactant Delivery

Small plant components are required to deliver the reactants to the fuel cell with the required conditions. Examples of these components are blowers, compressors, pumps, and humidification systems used to deliver the gases to the fuel cell with the proper temperature, humidity, flow rate and...

Chemical Hydrides

Fuel cells often use compressed hydrogen as the fuel; however, many other hydrogen sources can be used with fuel cells. Chemical hydride storage is an alternative method of producing hydrogen via a chemical reaction. These reactions involve chemical hydrides, water, and alcohols. The chemical reactions are not reversible, and the byproducts must be discarded. Hydrogen fuel can also...

Metal Hydrides

Fuel cells usually use compressed hydrogen as the fuel, but there are many other types of fuels that can be used. The type of fuel used depends upon the fuel cell application. Fuels are often in their final form before entering the fuel cell; however, certain fuel cell types can be processed on the inside of the fuel cell. Alternative fuel types are...

Introduction to Fuel Cell Testing

Those who wish to learn more about fuel cells, and even to build their own, may also want to learn how to test those fuel cells. In this post, we will review some basic terms, and introduce low-cost testing equipment and more sophisticated testing setups. First, however, an understanding of the fuel cell and electrical basics will...

Energy Harnessed from the Wind: Part 2

Wind power generates electricity by transferring energy from wind to mechanical energy. The principle behind wind turbines is very simple: the energy in the wind turns two or three blades around a rotor. The rotor is connected to the shaft, which spins a generator to create electricity. Wind turbines are mounted on...

Energy Harnessed from the Wind: Part I

Imagine that something that you cannot see can have enough movement to harness energy! From a scientific perspective, air is like any other fluid -- if it can be moved forcefully, the motion provides kinetic energy. In a wind-electric turbine, the turbine blades capture the kinetic energy of the...

Explanation of the Thermodynamics Behind Fuel Cell & Electrolyzer Design

Thermodynamics is the study of energy changing from one form to another. Many predictions can be made using thermodynamic equations, and these are essential for understanding fuel cell and electrolyzer performance because these devices transform chemical energy into...

Carbon Nanotubes

There are many novel hydrogen methods that are currently being investigated that offer the potential for higher energy density than conventional methods. These include hydrogen storage in carbon nanotubes. Carbon nanotubes are unique structures with exceptional electronic and...

Biological Fuel Cells (BFCs) and the Bio-production of Hydrogen

A biological fuel cell (BFC) or microbial fuel cell (MFC) is a type of fuel cell that converts biochemical energy into electrical energy. Like other types of fuel cells, a biological fuel cell consists of an anode, a cathode, and a membrane that conducts ions. In the anode compartment, fuel is oxidized by microorganisms, and the result is...