Categories

Blog Search

Search Criteria

Blog Search:

Articles meeting the search criteria

Gas Diffusion Layer Comparison Chart - 2023

Gas Diffusion Layers(GDLs) are one of the components in different types of fuel cells including, but not limited, to Proton Exchange Membrane and Direct Methanol fuel cells. Gas Diffusion Layers serve to provide conductivity in the cell and control the contact between the reactant gases and the catalyst.

Gas Diffusion Layer Comparison Chart - 2021

Gas Diffusion Layers (GDL) are one of the components in different types of fuel cells including, but not limited, to Proton Exchange Membrane and Direct Methanol fuel cells. Gas Diffusion Layers serve to provide conductivity in the cell and control the contact between the reactant gases and the catalyst. This layer also aids in managing the water transport out of the membrane. Another essential function of a GDL is to provide a connection between the membrane electrode assembly and graphite plates in the fuel cell stack.

Anion Exchange Membranes (AEMs)

Anion exchange membranes (AEMS) have been an active area of research for over a decade. AEMS can be used for fuel cells, redox flow batteries, electrolyzers, and even water desalination membranes. The electrolyte layer is the “heart” of electrochemical cells such as fuel cells, batteries, and because it transports ions from...

A One-Dimensional Heat, Mass and Charge Transfer Model for a Polymer Electrolyte Fuel Cell Stack

A one-dimensional heat, mass and charge transfer model was developed for a polymer electrolyte fuel cell stack to predict the temperatures, mass flows, pressure drops, and charge transport of each fuel cell layer over different operating conditions. The fuel cell layers’ boundaries were...

A Review of Mathematical Modeling of Proton Exchange Membrane and Direct Methanol Fuel Cells

There has been a lot of emphasis on the development of long-lasting, efficient and portable, power sources for further technology improvement in commercial electronics devices, medical diagnostic equipment, mobile communication and military applications. These systems all require...

Fuel Cell Modeling Basics

Fuel cell modeling is helpful for fuel cell developers because it can lead to fuel cell design improvements, as well as cheaper, better, and more efficient fuel cells. The model must be robust and accurate and be able to provide solutions to fuel cell problems quickly. A good model should predict fuel cell performance under a wide range of...

Modeling the Catalyst Layers

The fuel cell electrode layer is made up of the catalyst and porous gas diffusion layer. When the fuel in the flow channels meets the electrode layer, it diffuses into the porous electrode. The reactant travels to the catalyst layer where it is broken into protons and electrons. The electrons move to the...

Fuel Cell Electrolyte Layer Modeling

The electrolyte layer is essential for a fuel cell to work properly. In PEM fuel cells (PEMFCs), the fuel travels to the catalyst layer and gets broken into protons (H+) and electrons. The electrons travel to the external circuit to power the load, and the hydrogen protons travel through the electrolyte until it reaches the cathode to combine with oxygen to form...

Processing Alternative Fuels for Fuel Cells

Fuel cells are not limited to pure hydrogen gas as fuel. Each type of fuel cell stack has different fuel tolerances. The lower the operating temperature of the stack, the stricter the requirements for pure fuel. For fuels other than pure hydrogen, an external fuel processing system may...

The Effect of Clamping Pressure on Fuel Cell Performance

There are many steps involved in the manufacturing of a fuel cell stack. One of these steps is the hot pressing of the polymer electrolyte membrane to the two gas diffusion layers (GDLs). This creates a three-layer laminate membrane electrode assembly (MEA). Other steps involve the machining or etching of the...

Mathematical Models

Mathematical models are a precise description of a problem, process, or technology in the form of mathematics. These models are built to learn more about a technology, system or method. The models explain why the system or process works the way it does and helps to study the effects and...

Introduction to Fuel Cell Testing

Those who wish to learn more about fuel cells, and even to build their own, may also want to learn how to test those fuel cells. In this post, we will review some basic terms, and introduce low-cost testing equipment and more sophisticated testing setups. First, however, an understanding of the fuel cell and electrical basics will...

Fuel Cell Heat Flow

Understanding the flow of heat in a fuel cell is important to design and build a fuel cell properly. The energy that flows into and out of each process unit in the fuel cell needs to be accounted for to determine areas of excess heat and the overall energy requirements. There are several methods that...

Gas Diffusion Layer: Characteristics and Modeling

The gas diffusion layer (GDL) in a fuel cell can consist of a single layer or a double layer (gas diffusion layer and a microporous layer). The GDL is an essential part of the fuel cell because it causes the gases to spread out to maximize the contact surface area with the catalyst...

Explanation of the Thermodynamics Behind Fuel Cell & Electrolyzer Design

Thermodynamics is the study of energy changing from one form to another. Many predictions can be made using thermodynamic equations, and these are essential for understanding fuel cell and electrolyzer performance because these devices transform chemical energy into...