Categories

Dr. Colleen Spiegel

Dr. Colleen Spiegel

Dr. Colleen Spiegel is a mathematical modeling and technical writing consultant (President of SEMSCIO) and Professor holding a Ph.D. and an MSc degree in Engineering. She has seventeen years of experience in engineering, statistics, data science, research & technical writing work for many companies as a consultant, employee, and independent business owner. She is the author of ‘Designing and Building Fuel Cells’ (McGraw-Hill, 2007) and ‘PEM Fuel Cell Modeling and Simulation Using MATLAB’ (Elsevier Science, 2008). She previously owned Clean Fuel Cell Energy, LLC, which was a fuel cell organization that served scientists, engineers, and professors world-wide.

Why Fuel Cells Lead The Road to Long-Term Sustainability for Vehicles

Fuel cells have now been under development for several decades. Since I first became interested in fuel cells in the 1990’s, I have seen waves of excitement and investment followed by periods of skepticism and disillusionment. Only a few companies have stayed in the game, with Ballard in Canada and the large automakers such as Toyota being a critical and essential part for...

A One-Dimensional Heat, Mass and Charge Transfer Model for a Polymer Electrolyte Fuel Cell Stack

A one-dimensional heat, mass and charge transfer model was developed for a polymer electrolyte fuel cell stack to predict the temperatures, mass flows, pressure drops, and charge transport of each fuel cell layer over different operating conditions. The fuel cell layers’ boundaries were...

A Review of Mathematical Modeling of Proton Exchange Membrane and Direct Methanol Fuel Cells

There has been a lot of emphasis on the development of long-lasting, efficient and portable, power sources for further technology improvement in commercial electronics devices, medical diagnostic equipment, mobile communication and military applications. These systems all require...

What’s So Good About Hydrogen?

Many automotive manufacturers have chosen fuel cell technology as the long-term solution to replace combustion engines when the oil stops flowing -- but that’s not expected to happen for at least another 15 years (even if we keep using it at our current rate). So why are we...

Building a Micro DMFC Design

This blog post includes a quick fuel cell introduction, parts list and design for a 1 cm x 1 cm (active area) fuel cell. This summary was put together mainly for students interested in fuel cell research. Figure 1 presents a summary of the dimensions and basic characteristics of most MEMs fuel cell stacks in the...

Stationary Fuel Cell Power Applications

Fuel cells can be used for primary power, backup power, or combined heat and power (CHP) for stationary applications. Stationary fuel cells can be sized to power anything from a single-family home to a large business center, which means they make sense for a wide range of markets including retail, data centers, residential, telecommunications, and...

Fuel Cell Buses, Utility Vehicles and Scooters

Fuel cells can be used to power the electric motor of buses, utility vehicles, and electric scooters. The vast majority of these fuel cells use oxygen from the air and compressed hydrogen; therefore, these vehicles only emit water and heat as byproducts. The major reason for developing fuel cell technology for...

Science and Engineering Careers & Basic Science Experiments for Kids

I was getting my haircut last week, and my hairdresser told me that her daughters are interested in science. She then asked me, “What should I tell them about science-based careers?” “I really do not know what scientists and engineers do?” I could see my hairdresser’s point-of-view though, I really did not know much about engineering or...

Fuel Cell Vehicles - Automobiles

Fuel cell vehicles (FCV) use fuel cells to power the vehicle’s electric motor. Many FCVs use a fuel cell combined with a battery and supercapacitor to efficiently start-up, power, and utilize the best energy source for constant and peak power. In FCVs, the fuel cell uses oxygen from...

Become a Renewable Energy Expert

Many years ago, there was a great guy that used to sit next to me at work. We used to laugh a lot when people called themselves “experts.” When it was really true -- we didn’t laugh; however, it often was not true. Our fast-paced culture breeds this mentality because many individuals think that if they do something...

Fuel Cell Modeling Basics

Fuel cell modeling is helpful for fuel cell developers because it can lead to fuel cell design improvements, as well as cheaper, better, and more efficient fuel cells. The model must be robust and accurate and be able to provide solutions to fuel cell problems quickly. A good model should predict fuel cell performance under a wide range of...

How to Predict Fuel Cell Performance

The performance of a fuel cell stack can be estimated using a few equations combined with some input data. A common way of characterizing performance of different fuel cell stacks is using polarization curves. Although you cannot pinpoint specific issues with these curves, they will allow you to calculate the overall performance. An example polarization curve is...

Model Validation Using Residuals

Model validation is the most important step in the model building process; however, it is often neglected. Even when the model is validated, it is often not done adequately. It often consists of taking a few experimental data points and plotting these points on the same graph as the model. There are two different types of models: engineering or...

Transport Phenomena in Micro and MEMs Fuel Cells

As fuel cell size decreases, the transport phenomena of the fuels and water changes in the fuel cell. In standard fuel cell designs, the movement of fuel and water is governed by volumetric effects, but surface effects become critical as dimensions shrink. A good rule of thumb is that millimeter-scale devices are small enough for...

Fuel Cell Reactant Delivery

Small plant components are required to deliver the reactants to the fuel cell with the required conditions. Examples of these components are blowers, compressors, pumps, and humidification systems used to deliver the gases to the fuel cell with the proper temperature, humidity, flow rate and...