So, you have bought a fuel cell and are ready to start using it.
Or are you?
Did you plan on any of the ancillary components you might need? Depending on who you buy the fuel cell from and what model it is will determine what components come with the fuel cell and what you will need to buy. In general, a fuel cell system needs several things in order for it to work in any system:
Hydrogen storage (which may also include Hydrogen production)
Fuel Cell system
Power conditioning
Hydrogen Storage
Even if you are generating your hydrogen on-site, you will ..
Why is an activation procedure or break-in necessary for a membrane electrode assembly (MEA)? A large reason for performing an activation procedure or break-in is to properly humidify the membrane portion of the MEA that was dried out during the hot press stage of the membrane electrode assembly (MEA) production. MEAs will not work well when they are not fully humidified (see article: Why is Humidity / Moisture Control Important in a Fuel Cell?).
How do I Humidify a Membrane Electrode Assembly (MEA)?
You can re-humidify the MEA by soaking it in deionized water. ..
Knowing what's happening inside a fuel cell is a critical function, especially as fuel cells are continuing to be developed. One important aspect of this is to measure the voltage of each cell in a stack. Although this may sound trivial, it can be more complex and more expensive than it may at first appear due to high voltages, high channel counts, communication types, etc. There are a few products commercially available that are designed specifically for fuel cell voltage monitoring.
You can find the Cell Voltage Monitors (CVMs) and other electronic measurement devices currently a..
As we saw in the previous blog post, the process of ion exchange is influenced by a very large number of factors. The primary mode of ion transport is diffusion, which is process of the movement of atoms, ions, molecules, or energy from a region of high concentration to a region of low concentration.
The rate of ion exchange depends on the rates of the chemical (ionic) reactions in the ionic exchange material (membranes, dispersions, beads, pellets, etc.), but it is often limited by the diffusion processes. The ion exchange process maybe primarily controlled by diffusion, which is dependent upon the material layers, structure, thickness and reactant rate of contact on the surface of the material. This blog post introduces the factors to consider when thinking about the kinetics of the ion exchange reactions.
Mechanism of Ion Exchange Processes
A common ion-exchange system is an ..
Ion exchange materials are used to purify, separate, and extract many different types of molecules, including organic and biochemical molecules. When ion exchange materials involve these ion types, there may be additional complexities involved with the interaction.Some of the phenomena that may occur are:
-
Secondary forces between the ionized group and counterion. These forces may consist of coordination, hydrogen, and van der Waals bonding.
-
The pH can affect the percent ionization.
-
The position of the functional groups can affect ion transport.
-
Hydration of organic molecules can be more complex than inorganic ions.
-
Organic ions may be larger than inorganic ions; thus, steric hinderances can reduce ionic interactions.
Therefore, ion exchange phenomena may be able to be explained chemically by stoichiometric reactions, but the actual ionic selectively may be determined by other interactions.
Thanks to our handy Hydrogen Air Calculator Sheet, you can take the IV curve of any membrane electrode assembly (MEA), assign an active area, current density, and desired power output and the calculator will determine the number of MEAs needed along with the voltage and current of the fuel cell operating at that point.
Membranes are essential for PEM fuel cells to operate. The Proton Exchange Membrane carries the hydrogen ions from the anode to the cathode without passing the electrons that were removed from the hydrogen atoms.
The Fuel Cell Store carries the largest selection of Membranes in the world! We help you compare all the Membranes we offer in one simple file so you can narrow down the perfect Membrane for your project. With our Membrane Comparison Table you can compare the specifications of all our Cation Exchange Membranes, Anion Exchange Membranes, and Bipolar Membranes with ease.
Gas Diffusion Layers (GDL) are one of the components in different types of fuel cells including, but not limited, to Proton Exchange Membrane and Direct Methanol fuel cells. Gas Diffusion Layers serve to provide conductivity in the cell and control the contact between the reactant gases and the catalyst. This layer also aids in managing the water transport out of the membrane. Another essential function of a GDL is to provide a connection between the membrane electrode assembly and graphite plates in the fuel cell stack.
In nature, the majority of gases, liquids, and solids are not charged (in the neutral form). Ion exchange, where free ions are exchanged for different ions, occurs when there is an open network structure to carry the ions through it. There are many natural and man-made mediums that are ion exchangers, including solids, liquids, and gases. The medium needs to be in contact with the ion exchanger and these two entities exchange some of its ions for similarly charged ions. The medium is often a solid ion exchanger in contact with an aqueous solution or gas. If you recall from chemistry, there ..