Categories

Fuel Cell Information

Gas Diffusion Layer Comparison Chart - 2021

Gas Diffusion Layers (GDL) are one of the components in different types of fuel cells including, but not limited, to Proton Exchange Membrane and Direct Methanol fuel cells. Gas Diffusion Layers serve to provide conductivity in the cell and control the contact between the reactant gases and the catalyst. This layer also aids in managing the water transport out of the membrane. Another essential function of a GDL is to provide a connection between the membrane electrode assembly and graphite plates in the fuel cell stack.

How Ion Exchange Works
In nature, the majority of gases, liquids, and solids are not charged (in the neutral form). Ion exchange, where free ions are exchanged for different ions, occurs when there is an open network structure to carry the ions through it. There are many natural and man-made mediums that are ion exchangers, including solids, liquids, and gases. The medium needs to be in contact with the ion exchanger and these two entities exchange some of its ions for similarly charged ions. The medium is often a solid ion exchanger in contact with an aqueous solution or gas. If you recall from chemistry, there ..
An Introduction to Cation Exchange Membranes
Cation exchange membranes (CEMs) are frequently referred to as proton exchange membranes (PEMs) because they are often used in chemical reactions that generate protons. CEMs are used in various applications ranging from proton exchange membrane and microbial fuel cells to chlorine and caustic soda production. The cation exchange membrane (CEM) contains negatively charged functional groups (PO3-, COO–, and C6H4O–) in the membrane backbone, which allows cations to pass through. There are many types of CEM that have been used in the literature, including Nafion©, Fumatech, Aquiv..
Compact Transient Model for Nafion Membranes

A numerical model was developed to predict the water concentration, temperature, potential and pressure across a Nafion membrane used in proton exchange membrane (PEM) based fuel cells. The numerical model consists of simultaneously calculating the diffusive flux for water and hydrogen, the proton potential and the pressure and temperature at each node...

An Introduction to Ion Exchange Membranes and Salt Splitting

Ion-exchanges membranes (IEMs) have many applications beyond fuel cells -- they can also be used to synthesize all types of compounds that are used in various industries. The most popular IEMs consist of polymeric resins with charged functional groups based upon their ion selectivity, they are referred to as anion-exchange (AEM) and...

Anion Exchange Membranes (AEMs)

Anion exchange membranes (AEMS) have been an active area of research for over a decade. AEMS can be used for fuel cells, redox flow batteries, electrolyzers, and even water desalination membranes. The electrolyte layer is the “heart” of electrochemical cells such as fuel cells, batteries, and because it transports ions from...

An Introduction to Alkaline Fuel Cells

Alkaline fuel cells (AFCs) was one of the first extensively researched fuel cell types and was used by NASA for the Gemini, Apollo, and Space Shuttle missions. The first alkali electrolyte fuel cell was built by Francis Thomas Bacon (1904–1992) in 1939. He used potassium hydroxide for the electrolyte and...

Calculator for Preparing Methanol-Water Mixture for DMFCs

Direct methanol fuel cells (DMFCs) utilize a mixture of methanol and deionized water (or distilled water) as the fuel for anode side. The most common range for the molarity of the methanol is 0 to 1 Molar and occasionally 0 to 2 Molars (the latter one for advanced users utilizing customized MEAs or CCMs). Our MEAs or CCMs that are manufactured for DMFCs...

Why Fuel Cells Lead The Road to Long-Term Sustainability for Vehicles

Fuel cells have now been under development for several decades. Since I first became interested in fuel cells in the 1990’s, I have seen waves of excitement and investment followed by periods of skepticism and disillusionment. Only a few companies have stayed in the game, with Ballard in Canada and the large automakers such as Toyota being a critical and essential part for...

A One-Dimensional Heat, Mass and Charge Transfer Model for a Polymer Electrolyte Fuel Cell Stack

A one-dimensional heat, mass and charge transfer model was developed for a polymer electrolyte fuel cell stack to predict the temperatures, mass flows, pressure drops, and charge transport of each fuel cell layer over different operating conditions. The fuel cell layers’ boundaries were...