Categories

Fuel Cell Materials

The Fuel Cell Electrolyte Layer for Low-Temperature Fuel Cells

The electrolyte layer is essential for a fuel cell to work properly. In low-temperature fuel cells, when the fuel in the fuel cell travels to the catalyst layer, the fuel molecule gets broken into protons (H+) and electrons. The electrons travel to the external circuit to power the load, and the hydrogen proton (ions) travel through the electrolyte until it reaches...

Gas Diffusion Layer for Low-Temperature Fuel Cells

The gas diffusion layer is sandwiched between the catalyst layer and the bipolar plates as shown in Figure 1. The gas diffusion layer (GDL) provides electrical contact between electrodes and the bipolar plates and distribute reactants to the electrodes. The GDL also allows the water that is generated as a result of the chemical reaction to move between the electrodes and the ...

Low-Temperature Fuel Cell Membrane Electrode Assembly Processing Techniques

The fuel cell stack consists of many layers, including: The Membrane Electrode Assembly (MEA), Gaskets, Flow field plates, and End plates.  There are two standard methods of assembling the membrane electrode assembly (MEA) in low-temperature fuel cells. The catalyst layer can be applied in one or two steps. For the first method, there are five common ways to prepare and apply the catalyst for the GDL/catalyst assembly:

Gas Diffusion Layer Comparison Chart

Gas Diffusion Layers (GDL) are one of the components in different types of fuel cells including, but not limited, to Proton Exchange Membrane and Direct Methanol fuel cells. Gas Diffusion Layers serve to provide conductivity in the cell and control the contact between the reactant gases and the catalyst. This layer also aids in managing the water transport out of the membrane. Another essential function of a GDL is to provide a connection between the membrane electrode assembly and graphite plates in the fuel cell stack.