Categories

Fuel Cell System Design

Fuel cell system designs range from very simple to very complex depending upon the fuel cell application and the system efficiency desired. A fuel cell system can be very efficient with just the fuel cell stack and a few other balance-of-plant components or may require many outside components to optimize the fuel cell performance. The fuel cell catalyst, membranes, and flow-field plates are very important areas for fuel cell improvement, but stack optimization is as equally important. This post focuses on selecting and designing the fuel and electrical subsystems.

 

Figure 1: Simple PEM fuel cell system

The following is a brief description of the fuel cell system components shown in Figure 1:

Oxidant Air Flow: The oxidant air is filtered for particulates as it is being pumped into the fuel cell from the atmosphere. The air pressure transducer keeps track of the air pressure coming into the fuel cell. The oxidant air is filtered again for particulates, and then humidified before it enters the fuel cell stack.

Hydrogen Flow: The pure hydrogen is stored in a compressed gas cylinder. There can be one or more check valves before the hydrogen enters the system. A mass flow controller would also be beneficial to monitor the flow rate.

Water and Hydrogen Out: The hydrogen exits the fuel cell stack by going through a particulate filter. The pressure transducer records the pressure of this stream before it is purged. The water is purged through an external product water vent.

Fuel cell systems can easily become complex when the stack is large, and the temperature, pressure, water, and heat are monitored and/or require fuel processing units. Only a few sensors and pressure transducers are included in Figures 1. A fully developed control system will consist of thermocouples, pressure transducers, methanol/hydrogen sensors, and mass flow controllers, which will measure and control data using a data acquisition program.

Fuel Subsystem

The fuel subsystem is very important because the reactants need to move around the fuel cell plant to be pressurized, cooled, heated, humidified and ultimately be delivered to the fuel cell. To accomplish any of these tasks, plant components such as blowers, compressors, pumps, and humidification systems must be used. Other plant components, such as turbines are also useful because they can harness energy from the heated exhaust gases from the fuel cell.

Humidification Systems

In PEMFC systems, a humidifier for the hydrogen gas inlet stream may be required to prevent the fuel cell PEM from dehydrating under load. Water management is a challenge in the PEM fuel cell because there is ohmic heating under high current flow, which will dry out the polymer membrane and slow ionic transport. Stacks that are not operating near the maximum power constantly, may not require any humidification, or the stack may be able to self-humidify. In larger fuel cell systems, either the air or the hydrogen or both the air and hydrogen must be humidified at the fuel inlets. The gases can be humidified by bubbling the gas through water (dewpoint humidification), water or steam injection, exchange of water and heat through a water permeable medium or though many other methods.

Fans and Blowers

An economical way to cool a fuel cell or to provide air to a fuel cell is to use fans or blowers. When using a fan or blower, the fuel cell exhaust is open to the environment. The fan or blower is driven by an electric motor, which requires power from the fuel cell or another source to run. One of the commonly used fans is the axial fan, which is effective in moving air over parts; however, it is not effective across large pressure differentials.

Compressors

Compressing the air input increases the concentration of oxygen per volume per time, and therefore, increases the fuel cell efficiency. This means that a smaller and lighter fuel cell stack can be used. In addition, the drop-off in voltage will be delayed by mass transport problems is delayed until higher current densities. If the pressure is higher, a lower volumetric flow rate can be used for the same molar flow rate. Humidification is also easier since less water is required for saturation (per mole of air). The flow-field design is less restrictive because larger pressure drops can be tolerated in the flow field. A compressor (like a fan or blower) is driven by an electric motor, which does require power from the fuel cell or another source to run.

Turbines

In pressurized fuel cell systems, the outlet gas is typically warm and pressurized (though lower than the inlet pressure). This hot gas from fuel cells can be turned into mechanical work through the use of turbines. This energy can be used to generate work that may offset the work needed to compress the air. The efficiency of the turbine determines whether it should be incorporated into the fuel cell system.

Fuel Cell Pumps

Pumps, like blowers, compressors and fans, and their associated motors, are among the most important components of the fuel cell plant system. These components are required to move fuels, gases, and condensate through the system, and are important factors in the fuel cell system efficiency. Small- to medium-sized PEMFCs for portable applications have a back pressure of about 10 kPa or 1 m of water. This is too high for most axial or centrifugal fans; therefore, a pump would be better suited for these instances.

Electrical Subsystem

The electrical output of a fuel cell is not an ideal power source. The output of all fuel cells is a DC voltage that varies widely and has a limited overload capacity. Nevertheless, the output is useful for many applications such as AC grid-connected power generation, and AC- or DC-independent loads. A fuel cell stack is slow to respond to load changes and may have a slow startup. The fuel cell terminal voltage can alternate as much as   50 percent, depending on the load and fuel cell delivery. To make fuel cells behave like batteries, the fuel cell either needs to be designed to compensate for power spikes, the loads need to be redesigned to accommodate the limitations of fuel cells, or sophisticated power electronics are required.

The two basic power electronics areas that need to be addressed are power regulation and inverters. The electrical power output of a fuel cell is not constant. Increasing the current decreases the voltage proportionally greater than other electronic devices. The fuel cell voltage is typically controlled by voltage regulators, DC/DC converters, and chopper circuits at a constant value that can be higher or lower than the fuel cell operating voltage. The current generated by fuel cells is direct current (DC), which is advantageous for many smaller fuel cell systems. Larger fuel cell systems that connect to the power grid must be converted to alternating current (AC) using inverters.

Conclusion

The actual fuel cell efficiency has to take into account many types of losses: heat, electrode kinetics, electric and ionic resistance, and mass transport. Additional system losses are generated by the fuel processor, compressors, pumps, blowers, fans, and the electrical subsystem. The fuel cell system design must consist of the appropriate components for monitoring and improving the fuel cell inputs (hydrogen and oxygen) and outputs (electricity, water, and heat).

Dr. Colleen Spiegel Posted by Dr. Colleen Spiegel

Dr. Colleen Spiegel is a mathematical modeling and technical writing consultant (President of SEMSCIO) and Professor holding a Ph.D. and an MSc degree in Engineering. She has seventeen years of experience in engineering, statistics, data science, research & technical writing work for many companies as a consultant, employee, and independent business owner. She is the author of ‘Designing and Building Fuel Cells’ (McGraw-Hill, 2007) and ‘PEM Fuel Cell Modeling and Simulation Using MATLAB’ (Elsevier Science, 2008). She previously owned Clean Fuel Cell Energy, LLC, which was a fuel cell organization that served scientists, engineers, and professors world-wide.

Products related to this article

Related Articles

Introduction to Fuel Cell Applications

Fuel cells have been researched and developed for use in several applications since the early 1990's. Fuel cells can be used for portable, backup, transportation, and stationary power applications. This article briefly describes some of these uses for fuel cells.

What is a Fuel Cell?

Fuel cells are electrochemical devices that convert chemical energy from the reactants directly into electricity and heat. The device consists of an electrolyte layer in contact with a porous anode and cathode on either side. An illustration of a fuel cell with reactant/product gasses and the ion conduction flow directions through the cell is...

Considerations for Micro and MEMs Fuel Cells

The design elements of a micro or MEMs fuel cell stack are the same as a larger fuel cell stack, except that there should be special considerations for...

Considerations for Fuel Cell Design
When you first consider your fuel cell stack design, you will need to calculate several main factors to make sure you are getting the power that is required.  This post will provide you with an overview of the initial considerations for fuel cell design in room-temperature fuel cells.
Fuel Cell Operating Conditions

Fuel cell operating conditions depend upon the cell and stack design. The operating parameters that affect fuel cell performance are: Operating Pressure, Operating Temperature, Flow Rates of Reactants, and Humidity of Reactants. Using the correct operating condition for each parameter is...

Fuel Cell Characterization

Different characterization techniques enable the quantitative comparison of every property and part of the fuel cell stack. By characterizing the fuel cell properly, you can understand why the fuel cell is performing well or poorly. These techniques help discriminate between activation, ohmic and concentration losses, fuel crossover, and...

Polarization Curves

If you work with fuel cells, then you are definitely working with polarization curves. The polarization curve does not have a lot of specificity; however, it is one of the most common methods of testing a fuel cell. It also allows an easy comparison to other published polarization curves. The polarization curve displays the voltage output of the fuel cell for a given current density loading...

Fuel Cell Heat Management

Creating high-efficiency fuel cells requires proper temperature control, and heat management to ensure that the fuel cell system runs consistently. Depending upon the fuel cell type, the optimal temperature can range from room temperature to 1000 ºC, and any deviation from the designed temperature range can result in...

Water Management For PEM Fuel Cells

One of the greatest challenges associated with PEMFCs is the water balance in the fuel cell stack. As the chemical reaction occurs in each cell, water is generated. Depending upon the load and the operating conditions, there is a tendency for the fuel cells to both flood and dry-out. The water content in the...

Fuel Cell Modeling

After you understand the basic concepts around designing, building, and testing fuel cells, the next step is optimization. Optimization often involves extensive experimentation and testing, however, sometimes experimentation does not yield the expected results. Mathematical modeling is useful when phenomena cannot be visually...

Flow-Field Design

In fuel cells, the flow field plates are designed to provide an adequate amount of the reactants (hydrogen and oxygen) to the gas diffusion layer (GDL) and catalyst surface while minimizing pressure drop. The most popular channel configurations for PEM fuel cells are serpentine, parallel, and...

Fuel Cell Gaskets, Spacers, and End Plates

Most people wouldn’t think that much thought needs to be put into fuel cell components such as fuel cell gaskets, spacers, and end plates, however, every part of the fuel cell stack requires careful consideration. Incorrect fuel cell gaskets and end plates can lead to gas leaks and insufficient fuel cell stack...

Introduction to Electrolyzers

Electrolyzers use electricity to break water into hydrogen and oxygen. The electrolysis of water occurs through an electrochemical reaction that does not require external components or moving parts. It is very reliable and can produce ultra-pure hydrogen (> 99.999%) in a non-polluting manner when...

Transport of Electrons through the Fuel Cell

If you look at any basic fuel cell diagram, you can see that the fuel cell generates electrons. In the scientific or engineering circles, these electrons have many names, but a common term is “charge transport.” Charge transport is the movement of charges from the electrode (where they are produced) to the...

Renewable Energy Systems in the Future: Part 1

Despite the recent negative publicity surrounding fossil fuels, crude oil, and natural gas have been beneficial for the growth of the modern world. It has allowed us to have life after dark, transport goods all over the world, and enabled technology to advance. However, the use of fossil fuels has also resulted in...

Renewable Energy Systems in the Future: Part 2

Electricity for residential and business use can be produced using a combination of wind, solar, and hydrogen fuel cells. There also needs to be cooperation between corporations, utility companies, and individuals to successfully transition to a renewable energy economy. Corporations will have to manufacture...

Using Micro-Transport Phenomena in MEMs Fuel Cells

A lot of work has been devoted to the development of long-lasting, efficient and portable, power sources for further technology improvements in commercial electronics devices, medical diagnostic equipment, mobile communication and military applications. These systems all require...

Considerations for Stainless Steel Bipolar Plate Manufacturing

Low-temperature fuel cells have historically used CNC-machined graphite as bipolar plates. Graphite’s high-cost, high-permeability, and precise machining processes have presented difficulties for the large-scale market. Due to this, many other materials have been investigated, including carbon composite materials and...

Fuel Cell Stack Temperature in Mid-to-High Temperature Fuel Cells

There is an acute need for the development of long-lasting, efficient and portable power sources for further technology improvement in automobiles, commercial electronics devices, military and stationary applications. These systems all require the power source to be energy-efficient, and able to operate for long periods of time without...

Fuel Cell Primer

Fuel cells produce electricity from reactants such as oxygen and hydrogen -- although other fuels besides hydrogen can be used. The electrochemical reaction produces water and heat as byproducts. Fuel cells are much more efficient than the internal combustion engine because they provide more...

How to Build a Fuel Cell

The first step in building a fuel cell is to determine the power requirements needed to power the particular device or application. Fuel cells can be used to power anything including phones, laptops, automobiles, buses, houses, businesses and even space shuttles! A single fuel cell can be designed to achieve any current required for a particular application by merely increasing or decreasing the size of the...

Membrane Electrode Assembly (MEA) Characterization

Selecting the appropriate technique to properly characterize the fuel cell is extremely important because it helps the user to understand why the fuel cell is performing well or poorly. These techniques will help discriminate between activation, ohmic and concentration losses, fuel crossover, and...

Explanation of the Thermodynamics Behind Fuel Cell & Electrolyzer Design

Thermodynamics is the study of energy changing from one form to another. Many predictions can be made using thermodynamic equations, and these are essential for understanding fuel cell and electrolyzer performance because these devices transform chemical energy into...

Introduction to Fuel Cell Testing

Those who wish to learn more about fuel cells, and even to build their own, may also want to learn how to test those fuel cells. In this post, we will review some basic terms, and introduce low-cost testing equipment and more sophisticated testing setups. First, however, an understanding of the fuel cell and electrical basics will...

Mathematical Models

Mathematical models are a precise description of a problem, process, or technology in the form of mathematics. These models are built to learn more about a technology, system or method. The models explain why the system or process works the way it does and helps to study the effects and...

The Effect of Clamping Pressure on Fuel Cell Performance

There are many steps involved in the manufacturing of a fuel cell stack. One of these steps is the hot pressing of the polymer electrolyte membrane to the two gas diffusion layers (GDLs). This creates a three-layer laminate membrane electrode assembly (MEA). Other steps involve the machining or etching of the...

Metal Hydrides

Fuel cells usually use compressed hydrogen as the fuel, but there are many other types of fuels that can be used. The type of fuel used depends upon the fuel cell application. Fuels are often in their final form before entering the fuel cell; however, certain fuel cell types can be processed on the inside of the fuel cell. Alternative fuel types are...

Pressure Distribution in Bipolar Plate Flow Channels

After the membrane electrode assembly (MEA) has been fabricated, it must be integrated into a fuel cell stack. The stack has multiple jobs, including evenly distributing fuel and oxidant to the cells, collecting the current to power the desired devices, and evenly distributing or discarding heat and...

Fuel Cell Electrolyte Layer Modeling

The electrolyte layer is essential for a fuel cell to work properly. In PEM fuel cells (PEMFCs), the fuel travels to the catalyst layer and gets broken into protons (H+) and electrons. The electrons travel to the external circuit to power the load, and the hydrogen protons travel through the electrolyte until it reaches the cathode to combine with oxygen to form...

Fuel Cell Vehicles - Automobiles

Fuel cell vehicles (FCV) use fuel cells to power the vehicle’s electric motor. Many FCVs use a fuel cell combined with a battery and supercapacitor to efficiently start-up, power, and utilize the best energy source for constant and peak power. In FCVs, the fuel cell uses oxygen from...

A One-Dimensional Heat, Mass and Charge Transfer Model for a Polymer Electrolyte Fuel Cell Stack

A one-dimensional heat, mass and charge transfer model was developed for a polymer electrolyte fuel cell stack to predict the temperatures, mass flows, pressure drops, and charge transport of each fuel cell layer over different operating conditions. The fuel cell layers’ boundaries were...

2 Comments To "Fuel Cell System Design"

Mohamad ali zyaei On 03.20.2024
Very good and tank you from your information Reply to this comment
Mex Control On 12.19.2018
Great Designs Colleen! Reply to this comment

Write a comment

Your Name:


Enter the code in the box below:

Your Comment:
Note: HTML is not translated!