Categories

Blog Search

Search Criteria

Blog Search:

Articles meeting the search criteria

Gas Diffusion Layer: Characteristics and Modeling

The gas diffusion layer (GDL) in a fuel cell can consist of a single layer or a double layer (gas diffusion layer and a microporous layer). The GDL is an essential part of the fuel cell because it causes the gases to spread out to maximize the contact surface area with the catalyst...

Fuel Cell Primer

Fuel cells produce electricity from reactants such as oxygen and hydrogen -- although other fuels besides hydrogen can be used. The electrochemical reaction produces water and heat as byproducts. Fuel cells are much more efficient than the internal combustion engine because they provide more...

Gas Diffusion Layer for Low-Temperature Fuel Cells

The gas diffusion layer is sandwiched between the catalyst layer and the bipolar plates as shown in Figure 1. The gas diffusion layer (GDL) provides electrical contact between electrodes and the bipolar plates and distribute reactants to the electrodes. The GDL also allows the water that is generated as a result of the chemical reaction to move between the electrodes and the ...

Gas Diffusion Layer Comparison Chart

Gas Diffusion Layers (GDL) are one of the components in different types of fuel cells including, but not limited, to Proton Exchange Membrane and Direct Methanol fuel cells. Gas Diffusion Layers serve to provide conductivity in the cell and control the contact between the reactant gases and the catalyst. This layer also aids in managing the water transport out of the membrane. Another essential function of a GDL is to provide a connection between the membrane electrode assembly and graphite plates in the fuel cell stack.