Categories

Blog Search

Search Criteria

Blog Search:

Articles meeting the search criteria

Membrane Electrode Assembly (MEA) Activation Procedures
  Why is an activation procedure or break-in necessary for a membrane electrode assembly (MEA)? A large reason for performing an activation procedure or break-in is to properly humidify the membrane portion of the MEA that was dried out during the hot press stage of the membrane electrode assembly (MEA) production. MEAs will not work well when they are not fully humidified (see article: Why is Humidity / Moisture Control Important in a Fuel Cell?). How do I Humidify a Membrane Electrode Assembly (MEA)? You can re-humidify the MEA by soaking it in deionized water. ..
Gas Diffusion Layer Comparison Chart - 2021

Gas Diffusion Layers (GDL) are one of the components in different types of fuel cells including, but not limited, to Proton Exchange Membrane and Direct Methanol fuel cells. Gas Diffusion Layers serve to provide conductivity in the cell and control the contact between the reactant gases and the catalyst. This layer also aids in managing the water transport out of the membrane. Another essential function of a GDL is to provide a connection between the membrane electrode assembly and graphite plates in the fuel cell stack.

Carbon Dioxide Capture and Conversion
An Introduction to CO2 Capture and Conversion Electrochemical devices that convert CO2 into fuels and valuable compounds have been undergoing extensive research for over a decade now. The research in this area has been driven by the desire to reduce reliance on fossil fuels and reduce greenhouse emissions. As you are probably aware, the majority of the world’s energy used for transportation, industrial, and residential uses are made from coal, petroleum, and natural gas. An Increase in CO2 Emissions As we are all aware, the consumption of fossil fuels has led to an increase in C..
Compact Transient Model for Nafion Membranes

A numerical model was developed to predict the water concentration, temperature, potential and pressure across a Nafion membrane used in proton exchange membrane (PEM) based fuel cells. The numerical model consists of simultaneously calculating the diffusive flux for water and hydrogen, the proton potential and the pressure and temperature at each node...

An Introduction to Ion Exchange Membranes and Salt Splitting

Ion-exchanges membranes (IEMs) have many applications beyond fuel cells -- they can also be used to synthesize all types of compounds that are used in various industries. The most popular IEMs consist of polymeric resins with charged functional groups based upon their ion selectivity, they are referred to as anion-exchange (AEM) and...

Anion Exchange Membranes (AEMs)

Anion exchange membranes (AEMS) have been an active area of research for over a decade. AEMS can be used for fuel cells, redox flow batteries, electrolyzers, and even water desalination membranes. The electrolyte layer is the “heart” of electrochemical cells such as fuel cells, batteries, and because it transports ions from...

An Introduction to Alkaline Fuel Cells

Alkaline fuel cells (AFCs) was one of the first extensively researched fuel cell types and was used by NASA for the Gemini, Apollo, and Space Shuttle missions. The first alkali electrolyte fuel cell was built by Francis Thomas Bacon (1904–1992) in 1939. He used potassium hydroxide for the electrolyte and...

Calculator for Preparing Methanol-Water Mixture for DMFCs

Direct methanol fuel cells (DMFCs) utilize a mixture of methanol and deionized water (or distilled water) as the fuel for anode side. The most common range for the molarity of the methanol is 0 to 1 Molar and occasionally 0 to 2 Molars (the latter one for advanced users utilizing customized MEAs or CCMs). Our MEAs or CCMs that are manufactured for DMFCs...

The Use of Hydrogen as an Energy Storage System

Many countries around the world have been diligently working towards implementing renewable energy plants for over a decade. According to the International Energy Agency (IEA), renewables in the form of hydropower, bioenergy, wind and solar will account for 18% of primary energy by 2035. Since 2013, more electrical grid capacity was added...

Renewable Energy Rundown: Solar Energy

This is the first part in a new SaveOnEnergy series discussing the ins and outs of different forms of renewable energy. Solar energy has grown in popularity across the country, from massive solar farms to single panels powering residential homes. This is especially true in Texas – which is fifth...

Standards and Requirements for Solar Systems

If you are considering the installation of a solar system (by yourself or by a solar company), there are several codes and regulations that need to be adhered to. These include the National Electrical Code (NEC), local permits, building codes, fire codes, and grounding systems. In addition, every component in a...

Why Fuel Cells Lead The Road to Long-Term Sustainability for Vehicles

Fuel cells have now been under development for several decades. Since I first became interested in fuel cells in the 1990’s, I have seen waves of excitement and investment followed by periods of skepticism and disillusionment. Only a few companies have stayed in the game, with Ballard in Canada and the large automakers such as Toyota being a critical and essential part for...

A One-Dimensional Heat, Mass and Charge Transfer Model for a Polymer Electrolyte Fuel Cell Stack

A one-dimensional heat, mass and charge transfer model was developed for a polymer electrolyte fuel cell stack to predict the temperatures, mass flows, pressure drops, and charge transport of each fuel cell layer over different operating conditions. The fuel cell layers’ boundaries were...

A Review of Mathematical Modeling of Proton Exchange Membrane and Direct Methanol Fuel Cells

There has been a lot of emphasis on the development of long-lasting, efficient and portable, power sources for further technology improvement in commercial electronics devices, medical diagnostic equipment, mobile communication and military applications. These systems all require...

What’s So Good About Hydrogen?

Many automotive manufacturers have chosen fuel cell technology as the long-term solution to replace combustion engines when the oil stops flowing -- but that’s not expected to happen for at least another 15 years (even if we keep using it at our current rate). So why are we...