Categories

Blog Search

Search Criteria

Blog Search:

Articles meeting the search criteria

Gas Diffusion Layer: Characteristics and Modeling

The gas diffusion layer (GDL) in a fuel cell can consist of a single layer or a double layer (gas diffusion layer and a microporous layer). The GDL is an essential part of the fuel cell because it causes the gases to spread out to maximize the contact surface area with the catalyst...

Explanation of the Thermodynamics Behind Fuel Cell & Electrolyzer Design

Thermodynamics is the study of energy changing from one form to another. Many predictions can be made using thermodynamic equations, and these are essential for understanding fuel cell and electrolyzer performance because these devices transform chemical energy into...

Membrane Electrode Assembly (MEA) Characterization

Selecting the appropriate technique to properly characterize the fuel cell is extremely important because it helps the user to understand why the fuel cell is performing well or poorly. These techniques will help discriminate between activation, ohmic and concentration losses, fuel crossover, and...

How to Build a Fuel Cell

The first step in building a fuel cell is to determine the power requirements needed to power the particular device or application. Fuel cells can be used to power anything including phones, laptops, automobiles, buses, houses, businesses and even space shuttles! A single fuel cell can be designed to achieve any current required for a particular application by merely increasing or decreasing the size of the...

Direct Methanol Fuel Cell Improvements

Fuel cells with polymer electrolyte membranes are appealing because of their low-temperature operation and relatively simple construction. The polymer electrolyte membrane (PEM) fuel cell consists of two catalyst electrodes (the anode and cathode) separated by polymer electrolyte. Gaseous fuels are fed continuously to the anode (negative electrode), while...

Fuel Cell Primer

Fuel cells produce electricity from reactants such as oxygen and hydrogen -- although other fuels besides hydrogen can be used. The electrochemical reaction produces water and heat as byproducts. Fuel cells are much more efficient than the internal combustion engine because they provide more...

Considerations for Stainless Steel Bipolar Plate Manufacturing

Low-temperature fuel cells have historically used CNC-machined graphite as bipolar plates. Graphite’s high-cost, high-permeability, and precise machining processes have presented difficulties for the large-scale market. Due to this, many other materials have been investigated, including carbon composite materials and...

Transport of Electrons through the Fuel Cell

If you look at any basic fuel cell diagram, you can see that the fuel cell generates electrons. In the scientific or engineering circles, these electrons have many names, but a common term is “charge transport.” Charge transport is the movement of charges from the electrode (where they are produced) to the...

Fuel Cell Gaskets, Spacers, and End Plates

Most people wouldn’t think that much thought needs to be put into fuel cell components such as fuel cell gaskets, spacers, and end plates, however, every part of the fuel cell stack requires careful consideration. Incorrect fuel cell gaskets and end plates can lead to gas leaks and insufficient fuel cell stack...

Materials Used for High-Temperature Fuel Cells

In a previous blog post, we described bipolar plates and the associated materials for low-temperature fuel cells. The materials previously described are selected for fuel cell stacks at or slightly above room-temperature -- which means that the materials are chemically compatible with the stack between 0 – 140 °C. The fuel cells that operate at higher temperatures require...

Techniques for Measuring Fuel Cell Resistance

The fuel cell polarization curve provides useful information on fuel cell performance, however; additional information is needed to study its performance characteristics accurately. Cell resistance provides insightful information about a fuel cell that is not completely captured by polarization curves. Since fuel cell current densities are high in comparison with...

Water Management For PEM Fuel Cells

One of the greatest challenges associated with PEMFCs is the water balance in the fuel cell stack. As the chemical reaction occurs in each cell, water is generated. Depending upon the load and the operating conditions, there is a tendency for the fuel cells to both flood and dry-out. The water content in the...

Fuel Cell Characterization

Different characterization techniques enable the quantitative comparison of every property and part of the fuel cell stack. By characterizing the fuel cell properly, you can understand why the fuel cell is performing well or poorly. These techniques help discriminate between activation, ohmic and concentration losses, fuel crossover, and...

Fuel Cell Operating Conditions

Fuel cell operating conditions depend upon the cell and stack design. The operating parameters that affect fuel cell performance are: Operating Pressure, Operating Temperature, Flow Rates of Reactants, and Humidity of Reactants. Using the correct operating condition for each parameter is...

Gas Diffusion Layer for Low-Temperature Fuel Cells

The gas diffusion layer is sandwiched between the catalyst layer and the bipolar plates as shown in Figure 1. The gas diffusion layer (GDL) provides electrical contact between electrodes and the bipolar plates and distribute reactants to the electrodes. The GDL also allows the water that is generated as a result of the chemical reaction to move between the electrodes and the ...