Categories

Blog Search

Search Criteria

Blog Search:

Articles meeting the search criteria

Pressure Distribution in Bipolar Plate Flow Channels

After the membrane electrode assembly (MEA) has been fabricated, it must be integrated into a fuel cell stack. The stack has multiple jobs, including evenly distributing fuel and oxidant to the cells, collecting the current to power the desired devices, and evenly distributing or discarding heat and...

Chemical Hydrides

Fuel cells often use compressed hydrogen as the fuel; however, many other hydrogen sources can be used with fuel cells. Chemical hydride storage is an alternative method of producing hydrogen via a chemical reaction. These reactions involve chemical hydrides, water, and alcohols. The chemical reactions are not reversible, and the byproducts must be discarded. Hydrogen fuel can also...

Metal Hydrides

Fuel cells usually use compressed hydrogen as the fuel, but there are many other types of fuels that can be used. The type of fuel used depends upon the fuel cell application. Fuels are often in their final form before entering the fuel cell; however, certain fuel cell types can be processed on the inside of the fuel cell. Alternative fuel types are...

Considerations for Stainless Steel Bipolar Plate Manufacturing: Part 2

Low-temperature fuel cells have historically used CNC-machined graphite as bipolar plates. Graphite’s high-cost, high-permeability, and precise machining processes have presented difficulties for the large-scale market. Due to this, many other materials have been...

Considerations for Stainless Steel Bipolar Plate Manufacturing

Low-temperature fuel cells have historically used CNC-machined graphite as bipolar plates. Graphite’s high-cost, high-permeability, and precise machining processes have presented difficulties for the large-scale market. Due to this, many other materials have been investigated, including carbon composite materials and...