Categories

Blog Search

Search Criteria

Blog Search:

Articles meeting the search criteria

Components of a Photovoltaic System

Photovoltaic (PV) panels are comprised of individual cells known as solar cells. Each solar cell generates a small amount of electricity. When you connect many solar cells together, a solar panel is created that creates a substantial amount of electricity. PV systems vary in...

Fuel Cell Heat Flow

Understanding the flow of heat in a fuel cell is important to design and build a fuel cell properly. The energy that flows into and out of each process unit in the fuel cell needs to be accounted for to determine areas of excess heat and the overall energy requirements. There are several methods that...

Introduction to Solar: Part 2

When a PV cell is exposed to sunlight, the photons of the absorbed sunlight dislodge the electrons from the atoms of the cell. The free electrons then move through the cell, creating and filling in holes. It is this movement of electrons and holes that generate electricity. The process of converting...

Introduction to Solar: Part 1

Most of us are familiar with solar cells because we encounter them every day – in calculators, street lamps, and traffic road signs. If these devices have enough light, they can theoretically work forever. Solar or photovoltaic (PV) cells are made up of many individuals cell stacked together. The cell material is a...

Energy Harnessed from the Wind: Part 2

Wind power generates electricity by transferring energy from wind to mechanical energy. The principle behind wind turbines is very simple: the energy in the wind turns two or three blades around a rotor. The rotor is connected to the shaft, which spins a generator to create electricity. Wind turbines are mounted on...

Energy Harnessed from the Wind: Part I

Imagine that something that you cannot see can have enough movement to harness energy! From a scientific perspective, air is like any other fluid -- if it can be moved forcefully, the motion provides kinetic energy. In a wind-electric turbine, the turbine blades capture the kinetic energy of the...

Explanation of the Thermodynamics Behind Fuel Cell & Electrolyzer Design

Thermodynamics is the study of energy changing from one form to another. Many predictions can be made using thermodynamic equations, and these are essential for understanding fuel cell and electrolyzer performance because these devices transform chemical energy into...

Power Electronics for Renewable Energy Systems

Hybrid renewable energy power systems are positioned to become the long-term power solution for portable, transportation and stationary system applications. Hybrid power systems are virtually limitless in possible setups and configurations to produce the desired power for a particular system. A hybrid system can consist of...

Biological Fuel Cells (BFCs) and the Bio-production of Hydrogen

A biological fuel cell (BFC) or microbial fuel cell (MFC) is a type of fuel cell that converts biochemical energy into electrical energy. Like other types of fuel cells, a biological fuel cell consists of an anode, a cathode, and a membrane that conducts ions. In the anode compartment, fuel is oxidized by microorganisms, and the result is...

Renewable Energy Systems in the Future: Part 2

Electricity for residential and business use can be produced using a combination of wind, solar, and hydrogen fuel cells. There also needs to be cooperation between corporations, utility companies, and individuals to successfully transition to a renewable energy economy. Corporations will have to manufacture...

Renewable Energy Systems in the Future: Part 1

Despite the recent negative publicity surrounding fossil fuels, crude oil, and natural gas have been beneficial for the growth of the modern world. It has allowed us to have life after dark, transport goods all over the world, and enabled technology to advance. However, the use of fossil fuels has also resulted in...

Introduction to Electrolyzers

Electrolyzers use electricity to break water into hydrogen and oxygen. The electrolysis of water occurs through an electrochemical reaction that does not require external components or moving parts. It is very reliable and can produce ultra-pure hydrogen (> 99.999%) in a non-polluting manner when...

Electrical Subsystem of Fuel Cells

If you took the electrical output directly from a fuel cell, it would be an unideal power source. The output of a fuel cell is a DC voltage that varies widely and has a limited overload capacity. The electrical output is slow to respond to load changes because it is based on a chemical reaction, and may have...