Categories

Fuel Cell Store Blog

An Introduction to Cation Exchange Membranes
Cation exchange membranes (CEMs) are frequently referred to as proton exchange membranes (PEMs) because they are often used in chemical reactions that generate protons. CEMs are used in various applications ranging from proton exchange membrane and microbial fuel cells to chlorine and caustic soda production. The cation exchange membrane (CEM) contains negatively charged functional groups (PO3-, COO–, and C6H4O–) in the membrane backbone, which allows cations to pass through. There are many types of CEM that have been used in the literature, including Nafion©, Fumatech, Aquiv..
Membrane Properties and Characterization for Zero-Gap CO2 Electrolyzers
Zero-gap electrolyzers are similar to fuel cells in design because the heart of the electrolyzer consists of two electrodes pressed against a membrane. These electrolyzers are called “zero-gap” because there is no gap between the cathodes, anodes, and the electrolyte. This design decreases the distance for ion transport because the layers are pressed or bonded together. The zero-gap CO2 electrolyzers can achieve high current densities (≥100 mA/cm2) by delivering gaseous CO2 to the cathode. The efficiency of these electrolyzers depends upon the catalysts used, the operating conditions, and o..
Carbon Dioxide Capture and Conversion
An Introduction to CO2 Capture and Conversion Electrochemical devices that convert CO2 into fuels and valuable compounds have been undergoing extensive research for over a decade now. The research in this area has been driven by the desire to reduce reliance on fossil fuels and reduce greenhouse emissions. As you are probably aware, the majority of the world’s energy used for transportation, industrial, and residential uses are made from coal, petroleum, and natural gas. An Increase in CO2 Emissions As we are all aware, the consumption of fossil fuels has led to an increase in C..
Compact Transient Model for Nafion Membranes

A numerical model was developed to predict the water concentration, temperature, potential and pressure across a Nafion membrane used in proton exchange membrane (PEM) based fuel cells. The numerical model consists of simultaneously calculating the diffusive flux for water and hydrogen, the proton potential and the pressure and temperature at each node...

An Introduction to Ion Exchange Membranes and Salt Splitting

Ion-exchanges membranes (IEMs) have many applications beyond fuel cells -- they can also be used to synthesize all types of compounds that are used in various industries. The most popular IEMs consist of polymeric resins with charged functional groups based upon their ion selectivity, they are referred to as anion-exchange (AEM) and...

Anion Exchange Membranes (AEMs)

Anion exchange membranes (AEMS) have been an active area of research for over a decade. AEMS can be used for fuel cells, redox flow batteries, electrolyzers, and even water desalination membranes. The electrolyte layer is the “heart” of electrochemical cells such as fuel cells, batteries, and because it transports ions from...

An Introduction to Alkaline Fuel Cells

Alkaline fuel cells (AFCs) was one of the first extensively researched fuel cell types and was used by NASA for the Gemini, Apollo, and Space Shuttle missions. The first alkali electrolyte fuel cell was built by Francis Thomas Bacon (1904–1992) in 1939. He used potassium hydroxide for the electrolyte and...

Calculator for Preparing Methanol-Water Mixture for DMFCs

Direct methanol fuel cells (DMFCs) utilize a mixture of methanol and deionized water (or distilled water) as the fuel for anode side. The most common range for the molarity of the methanol is 0 to 1 Molar and occasionally 0 to 2 Molars (the latter one for advanced users utilizing customized MEAs or CCMs). Our MEAs or CCMs that are manufactured for DMFCs...

The Use of Hydrogen as an Energy Storage System

Many countries around the world have been diligently working towards implementing renewable energy plants for over a decade. According to the International Energy Agency (IEA), renewables in the form of hydropower, bioenergy, wind and solar will account for 18% of primary energy by 2035. Since 2013, more electrical grid capacity was added...

Renewable Energy Rundown: Biomass

This is the fifth and final part in a SaveOnEnergy series discussing the ins and outs of different forms of renewable energy. In this series, we’ve covered a range of renewable power sources. Some, such as geothermal power, have been commonly used for decades. Others, including solar power, have recently risen in popularity due to...

Renewable Energy Rundown: Geothermal Energy

This is the fourth part in a SaveOnEnergy series discussing the ins and outs of different forms of renewable energy. Wind, solar, and water are all forces of nature that can provide renewable energy, but did you know we can also draw power from the earth itself? We call this geothermal energy – a power source collected from...

Renewable Energy Rundown: Hydropower

This is the third part in a SaveOnEnergy series discussing the ins and outs of different forms of renewable energy. Much like the history of wind power, people have been harnessing the power of water for centuries – a form of energy now known as hydropower. In fact, up until 2019, hydropower was the largest source of total U.S. renewable...

Renewable Energy Rundown: Wind Energy

This is the second part in a SaveOnEnergy series discussing the ins and outs of different forms of renewable energy. Harnessing the power of the wind is not a new idea. In fact, humans have been using wind power for hundreds of years. From filling the sails of massive ships to the classic windmills powering grain mills, wind power has...

Renewable Energy Rundown: Solar Energy

This is the first part in a new SaveOnEnergy series discussing the ins and outs of different forms of renewable energy. Solar energy has grown in popularity across the country, from massive solar farms to single panels powering residential homes. This is especially true in Texas – which is fifth...

Standards and Requirements for Solar Systems

If you are considering the installation of a solar system (by yourself or by a solar company), there are several codes and regulations that need to be adhered to. These include the National Electrical Code (NEC), local permits, building codes, fire codes, and grounding systems. In addition, every component in a...