Blog Search

Search Criteria

Blog Search:

Articles meeting the search criteria

Introduction to Fuel Cell Testing

Those who wish to learn more about fuel cells, and even to build their own, may also want to learn how to test those fuel cells. In this post, we will review some basic terms, and introduce low-cost testing equipment and more sophisticated testing setups. First, however, an understanding of the fuel cell and electrical basics will...

Gas Diffusion Layer: Characteristics and Modeling

The gas diffusion layer (GDL) in a fuel cell can consist of a single layer or a double layer (gas diffusion layer and a microporous layer). The GDL is an essential part of the fuel cell because it causes the gases to spread out to maximize the contact surface area with the catalyst...

Considerations for Stainless Steel Bipolar Plate Manufacturing: Part 2

Low-temperature fuel cells have historically used CNC-machined graphite as bipolar plates. Graphite’s high-cost, high-permeability, and precise machining processes have presented difficulties for the large-scale market. Due to this, many other materials have been...

Explanation of the Thermodynamics Behind Fuel Cell & Electrolyzer Design

Thermodynamics is the study of energy changing from one form to another. Many predictions can be made using thermodynamic equations, and these are essential for understanding fuel cell and electrolyzer performance because these devices transform chemical energy into...

Membrane Electrode Assembly (MEA) Characterization

Selecting the appropriate technique to properly characterize the fuel cell is extremely important because it helps the user to understand why the fuel cell is performing well or poorly. These techniques will help discriminate between activation, ohmic and concentration losses, fuel crossover, and...

How to Build a Fuel Cell

The first step in building a fuel cell is to determine the power requirements needed to power the particular device or application. Fuel cells can be used to power anything including phones, laptops, automobiles, buses, houses, businesses and even space shuttles! A single fuel cell can be designed to achieve any current required for a particular application by merely increasing or decreasing the size of the...

Direct Methanol Fuel Cell Improvements

Fuel cells with polymer electrolyte membranes are appealing because of their low-temperature operation and relatively simple construction. The polymer electrolyte membrane (PEM) fuel cell consists of two catalyst electrodes (the anode and cathode) separated by polymer electrolyte. Gaseous fuels are fed continuously to the anode (negative electrode), while...

Fuel Cell Primer

Fuel cells produce electricity from reactants such as oxygen and hydrogen -- although other fuels besides hydrogen can be used. The electrochemical reaction produces water and heat as byproducts. Fuel cells are much more efficient than the internal combustion engine because they provide more...

Fuel Cell Stack Temperature in Mid-to-High Temperature Fuel Cells

There is an acute need for the development of long-lasting, efficient and portable power sources for further technology improvement in automobiles, commercial electronics devices, military and stationary applications. These systems all require the power source to be energy-efficient, and able to operate for long periods of time without...

Using Micro-Transport Phenomena in MEMs Fuel Cells

A lot of work has been devoted to the development of long-lasting, efficient and portable, power sources for further technology improvements in commercial electronics devices, medical diagnostic equipment, mobile communication and military applications. These systems all require...

Introduction to Electrolyzers

Electrolyzers use electricity to break water into hydrogen and oxygen. The electrolysis of water occurs through an electrochemical reaction that does not require external components or moving parts. It is very reliable and can produce ultra-pure hydrogen (> 99.999%) in a non-polluting manner when...

Low-Temperature Bipolar Plates

Each component of the fuel cell must be designed properly – otherwise, you run the risk of decreasing fuel cell performance. The bipolar plates are termed “bipolar” because they have flow fields on both sides. This design is very convenient when you have membrane electrode assemblies (MEAs) on both sides. In a fuel cell with a...

Water Management For PEM Fuel Cells

One of the greatest challenges associated with PEMFCs is the water balance in the fuel cell stack. As the chemical reaction occurs in each cell, water is generated. Depending upon the load and the operating conditions, there is a tendency for the fuel cells to both flood and dry-out. The water content in the...

Fuel Cell System Design

Fuel cell system designs range from very simple to very complex depending upon the fuel cell application and the system efficiency desired. A fuel cell system can be very efficient with just the fuel cell stack and a few other balance-of-plant components or may require many outside components to optimize...

Considerations for Fuel Cell Design
When you first consider your fuel cell stack design, you will need to calculate several main factors to make sure you are getting the power that is required.  This post will provide you with an overview of the initial considerations for fuel cell design in room-temperature fuel cells.